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Abstract
A conversion between two eigenfunction bases of spheroidal vector
wavefunctions is described, both bases comprising two independent sets
of solutions for the electro-magnetic vector wave equation with azimuthal
symmetry. A set of definite integrals over the angular variable, arising in the
conversion is evaluated in closed form, each integral containing a product of
two angular spheroidal wavefunctions with m = 0 or 1, weighted by algebraic
functions.

PACS numbers: 41.20.Jb, 03.50.De

1. Introduction

The electromagnetic inverse problem of reconstructing time-harmonic minimum energy
current distributions from the scattered field by means of linear inversion theory requires
the computation of certain inner products of a pair of vector eigenfunctions. Recently, in the
course of extending a source reconstruction procedure for spherical scatterers [1] to spheroidal
ones, the author came across the problem of computing such inner products for spheroidal
vector eigenfunctions.

Let X(r) and Y(r) denote two solenoidal vector wavefunctions, satisfying the time-
harmonic Helmholtz wave equation for the electric field

(∇ × ∇ × I − k2I ) · E = 0 (1)

in the spheroidal system of co-ordinates (f ; ξ, η, ϕ), where ξ and η are the radial and angular
spheroidal co-ordinates, ϕ being the azimuth angle and f is the semifocal distance [2, 3].
Then the inner products to be evaluated are the volume integrals

〈X|Y〉V = f 3
∫ 2π

0

∫ 1

−1

∫ ξ0

X� · Y(ξ 2 ∓ η2) dξ dη dϕ (2)
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the lower endpoint of the ξ -integral being 1 for prolate (elongated) and 0 for oblate (flattened)
spheroids (the upper sign pertains to prolate and the lower to oblate spheroids). The spheroid,
presumed to be aligned with the z-axis, is completely characterized by the interfocal distance
2f and the co-ordinate of the surface: ξ0 = a/f . For prolates, f = √

a2 − b2, and for oblates√
b2 − a2, a and b representing the polar and equatorial radius.

In the spheroidal system of co-ordinates, several eigenfunctions bases are available [2, 3],
some being computationally more advantageous than others. Eigenfunctions for the vector
field problems of electromagnetic radiation [1], scattering [3, 4] and cavity resonance [5]
are usually derived for the general wave equation (1), while those specifically chosen for the
analyses of omnidirectional spheroidal antennas, e.g. [6], are typically developed to satisfy the
rotationally symmetric (ϕ-independent) version of the same directly. One of the peculiarities
of the spheroidal system of co-ordinates is that the base of vector wavefunctions obtained by
the former method is not identical, in fact not even closely related, to that obtained from the
latter, albeit including the same vector components and behaving spatially in a similar way.
The latter eigenfunctions are not only less complicated than the former, but also do they not
contain any potential singularities that would endanger an evaluation of the volume integrals
of the inner products as independent, one-dimensional integrals. Hence, a conversion between
two alternative bases of eigenfunctions for rotationally symmetric spheroidal waves would be
valuable. Such a conversion is put forward in this paper, and the relevant integrals for the
angular spheroidal wavefunctions are evaluated in closed form.

2. Eigenfunction bases

Unlike the spherical wavefunctions, for which the volume integrals corresponding to (2) render
zero except when X = Y (meaning, ipso facto, that every spherical vector wavefunction is
perfectly orthogonal to all the others), any two representatives for the families of divergenceless
vector eigenfunctions {Mmn, Nmn} possible to construct within the spheroidal system in the
form

Mmn(kf ; ξ, η, ϕ) = ∇ × (�mnâ) (3)

Nmn(kf ; ξ, η, ϕ) = 1

k
∇ × ∇ × (�mnâ) = ∇ × Mmn

k
(4)

are generally neither orthogonal to each other, nor to the other elements of the set [2, 3].
The eigenfunctions are, however, clearly transverse to each other, Mmn being furthermore
transverse to â. Thus, assuming that the eigenfunctions represent the electric field, the Mmn

modes are labelled transverse electric (with respect to â) and the Nmn modes, correspondingly,
transverse magnetic.

The function �mn in (3) and (4)

�mn(kf ; ξ, η, ϕ) = R(1)
mn(kf ; ξ)Smn(kf ; η) exp(−jmϕ)

is a solution of the scalar wave equation, with Smn and R(1)
mn denoting, respectively, the angular

and radial spheroidal wavefunctions. To ensure that the field inside the spheroid is regular
everywhere the radial functions must be of the first kind. The vector eigenfunctions (3) and
(4) are thus applicable to determining resonant modes of a spheroidal cavity [5]. Outside the
spheroid, a complete set of eigenfunctions would also have to involve radial functions of the
second kind (which are infinite at the origin), but these are not treated here.

The spheroidal wavefunctions, Smn and R(1)
mn, are defined in terms of Legendre functions

of the first kind, P m
n , and spherical Bessel functions, jn(x) = √

π
2x

Jn+1/2(x), (Jn being the
conventional cylindrical Bessel function) as
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Smn(kf ; η) =
∞∑

r=0

d |m|n
r (kf )P

|m|
|m|+r (η) (5)

R(1)
mn(kf ; ξ) = (n − |m|)!

(n + |m|)!
(

ξ 2 − 1

ξ 2

) |m|
2 ∞∑

r=0

j r+|m|−n (2|m| + r)!

r!
d |m|n

r (kf )j|m|+r (kf ξ). (6)

The expansion coefficients d
|m|n
r (kf ) (the parameter kf is henceforth implicit) common for (5)

and (6) are obtained recursively using the eigenvalues of the governing differential equation
[2, 7]. To ensure a sufficient accuracy of the angular integrals to be treated in sections 2.1 and
3.1, special care must be taken to determine the coefficients d

|m|n
r as precisely as possible (for

instance, by suitably combining forward and backward recursions).
Regardless the choice for the vector â—be it ux, uy, uz or uξ , uη, uϕ or, as in our case,

the position vector r—numerical evaluation of three-dimensional integrals cannot be avoided.
In this respect, the rotationally symmetric modes, lacking ϕ-dependence and being thus
characterized by the azimuthal index m = 0, form a theoretically interesting but nonetheless
practically important exception. The two sets of spheroidal vector eigenfunctions (labelled by
the superscript A) of the base of rotationally symmetric modes are

MA
0n = ∇ × (�0nr) =

√
(1 − η2)(ξ 2 ∓ 1)

ξ 2 ∓ η2

[
ηS0n(η)

∂R
(1)
0n (ξ)

∂ξ
− ξR

(1)
0n (ξ)

∂S0n(η)

∂η

]
uϕ (7)

NA
0n =

√
ξ 2 ∓ 1

kf
√

ξ 2 ∓ η2

∂

∂η

[
(1 − η2)

(ξ 2 ∓ η2)

[
ηS0n(η)

∂R
(1)
0n (ξ)

∂ξ
− ξR

(1)
0n (ξ)

∂S0n(η)

∂η

]]
uξ

−
√

1 − η2

kf
√

ξ 2 ∓ η2

∂

∂ξ

[
(ξ 2 ∓ 1)

(ξ 2 ∓ η2)

[
ηS0n(η)

∂R
(1)
0n (ξ)

∂ξ
− ξR

(1)
0n (ξ)

∂S0n(η)

∂η

]]
uη.

(8)

Although these sets are orthogonal by direction, they are still not orthogonal to the other
elements of the same set. Thus, the remaining nonzero inner products are

〈
MA

0n

∣∣MA
0n′

〉
and〈

NA
0n

∣∣NA
0n′

〉
. Unfortunately, the factor ξ 2 ∓ η2 appearing in the denominators of the respective

double integral (the ϕ-integral can be readily integrated) precludes an independent evaluation
of the integrals for the variables ξ and η. Moreover, the factor ξ 2 − η2 (for prolates) tends
to zero at (ξ, η) = (1,±1), as does the factor ξ 2 + η2 (for oblates) at (ξ, η) = (0, 0), which
makes numerical evaluation of the integrals a delicate matter.

Fortunately, an alternative base of eigenfunctions can be employed, for which the inner
product separates into two independent integrals, one for each variable. The alternative pair
of solenoidal eigenfunctions, which can be derived directly from the ϕ-independent version
of the wave equation (1) [8, 9], and being in that respect equally capable of expressing any
rotationally symmetric and regular electromagnetic field inside a given spheroid as the pair
(7) and (8), is [8, 9]

MB
1n = R

(1)
1n (ξ)S1n(η)uϕ (9)

NB
1n = (kf )−1√

ξ 2 ∓ η2

[
R

(1)
1n (ξ)

∂

∂η

(
S1n(η)

√
1 − η2

)
uξ − S1n(η)

∂

∂ξ

(
R

(1)
1n (ξ)

√
ξ 2 ∓ 1

)
uη

]
. (10)

This base (denoted by the superscript B) is notably simpler in appearance, and also
computationally more attractive, than the base A. The properties of the base B eigenfunctions
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have been examined by Wall [9] in the course of formulating an electromagnetic Green tensor
in the spheroidal system, and their travelling wave alternatives (the function R

(4)
1n replacing

R
(1)
1n ) have been widely applied in antenna theory [6]. However, the functions (9) and (10)

of base B are in no way related to the functions (7) and (8) of the base A, since veritable
recursion formulae linking spheroidal wavefunctions of different n or m indices do not exist
[2, chapter 7]. Hence, a conversion routine would be of use for expressing the eigenfunctions
A with those of the simpler eigenfunctions B. Such a routine will be presented in the following
section.

For the eigenfunction pair B the mentioned inner products are easily written in terms
of separate integrals. In the following, we show how each of the integrals over the angular
variable η may be evaluated in closed form.

2.1. Angular integrals involved in
〈
MB

1n

∣∣MB
1n′

〉
and

〈
NB

1n

∣∣NB
1n′

〉
To evaluate

I1(n, n′) =
∫ 1

−1
S1n(η)S1n′(η) dη (11)

we refer to the fact that orthogonality of the angular spheroidal wavefunctions, which is due to
the corresponding differential equation being a special case of the Sturm-Liouville equation,
assures that expression (11) is zero except if n = n′. When that is the case, equation (11)
renders a constant �n, which for fixed kf only depends on n, and which can be obtained using
(5) and the orthogonality of Legendre functions [9] as

�n = 2
∞∑

r=0

(
d1n

r

)2 (r + 2)(r + 1)

(2r + 3)
(12)

so that

I1(n, n′) = δn,n′�n. (13)

In the evaluation of

I2(n, n′) =
∫ 1

−1
S1n(η)S1n′(η)η2 dη =

∞∑
r=0

d1n
r

∞∑
r ′=0

d1n′
r ′

∫ 1

−1
P 1

r+1(η)P 1
r ′+1(η)η2 dη (14)

we are led to use the identity

∫ 1

−1
P 1

r (x)P 1
r ′(x)x2 dx =




2r(r + 1)(2r2 + 2r − 3)

(2r − 1)(2r + 1)(2r + 3)
r = r ′

2r(r + 1)(r + 2)(r + 3)

(2r + 1)(2r + 3)(2r + 5)
r = r ′ − 2

2(r − 2)(r − 1)r(r + 1)

(2r − 3)(2r − 1)(2r + 1)
r = r ′ + 2

0 otherwise

(15)

which is derived in the appendix. As a result, equation (14) can be written as a single sum

I2(n, n′) = 2
∞∑

r=0

(r + 1)(r + 2)

(2r + 3)
d1n

r

×
[

(2r2 + 6r + 1)

(2r + 1)(2r + 5)
d1n′

r +
(r2 + 7r + 12)

(2r + 5)(2r + 7)
d1n′

r+2 +
(r − 1)r

(4r2 − 1)
d1n′

r−2

]
. (16)
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Lastly, the angular integral

I3(n, n′) =
∫ 1

−1

d

dη

[√
1 − η2S1n(η)

] d

dη

[√
1 − η2S1n′(η)

]
dη

=
∞∑

r=0

d1n
r

∞∑
r ′=0

d1n′
r ′

∫ 1

−1

d

dη

[√
1 − η2P 1

r+1(η)
] d

dη

[√
1 − η2P 1

r ′+1(η)
]

dη (17)

suggests the use of the orthogonality result∫ 1

−1

d

dx

[√
1 − x2P 1

r (x)
] d

dx

[√
1 − x2P 1

r ′(x)
]

dx = 2(r + r2)2

2r + 1
δr,r ′ (18)

also derived in the appendix. In sum,

I3(n, n′) = 2
∞∑

r=0

d1n
r d1n′

r

(r + 1)2(r + 2)2

2r + 3
. (19)

3. Conversion of eigenfunction base

If the conversion be of the form

MA
0n =

N∑
n′=1

αnn′MB
1n′ (20)

our task is to determine the conversion coefficients αnn′ so that (20) is valid for a given
spheroid. The truncation mode index N may be chosen at will, but to guarantee the stability
of the inverse solution [1] a practicable limit, which may be exceeded by a few modes only, is
the ‘electrical size’ of the spheroid; N = kf ξ .

Taking the inner product of (20) and MB
1n′ , for n, n′ = 1, 2, . . . , N , with respect to this

spheroid we have


α11 · · · α1N

...
. . .

...

αN1 · · · αNN


 =




〈
MA

01

∣∣MB
11

〉 · · · 〈
MA

01

∣∣MB
1N

〉
...

. . .
...〈

MA
0N

∣∣MB
11

〉 · · · 〈
MA

0N

∣∣MB
1N

〉



×




〈
MB

11

∣∣MB
11

〉 · · · 〈
MB

11

∣∣MB
1N

〉
...

. . .
...〈

MB
1N

∣∣MB
11

〉 · · · 〈
MB

1N

∣∣MB
1N

〉



−1

. (21)

Because even modes (modes antisymmetric in z) of base A give rise to only even modes
of base B, and in like manner odd modes (modes symmetric in z) only odd modes, every
second element of the matrix is identically zero. The largest coefficients are typically those
for n′ = n, and n′ = n±2. To illustrate with an example, a prolate spheroid whose spheroidal
parameter kf = 0.5 and surface ξ0 = 1.1547 (corresponding to an ellipticity, or axial ratio, of√

1 − ξ−2
0 ≈ 0.50), the coupling matrix including modes from n, n′ = 1, . . . , 5, is

α ≈




0.990 10 0 0.006 60 0 −0.000 19
0 1.014 19 0 0.003 09 0

0.004 23 0 0.994 98 0 0.001 76
0 0.002 28 0 1.003 41 0

0.000 00 0 0.001 40 0 0.997 94


 .
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Here, the diagonal character due to the smallness of kf ξ0 is quite pronounced. In fact, in
the spherical limit case f → 0 the elements of the coupling matrix αnn′ → δnn′ , so that the
matrix approaches the N × N-identity and expansion (20) reduces to only one term, expressing
essentially the relationship [10, equation (8.752.1)]

−
√

1 − η2
d

dη
Pn(η) = P 1

n (η) or
d

dθ
Pn(cos θ) = P 1

n (cos θ) (22)

as a function of the angle θ of the spherical co-ordinates.
Taking another example, where kf = 2 and ξ0 = 1.005 04, corresponding to a prolate of

ellipticity ≈0.10, we have

α ≈




0.864 01 0 0.089 31 0 0.001 08
0 1.225 82 0 0.057 24 0

0.054 42 0 0.929 59 0 0.027 11
0 0.039 50 0 1.052 94 0

0.000 72 0 0.020 97 0 0.967 96


 .

The diagonal character is less apparent here than in the first example, which can be expected
in consequence of the larger size-parameter kf ξ0.

An indisputable disadvantage of the present conversion routine is the fact that, for a simple
transformation of N modes from one base to another, one has to compute, in principle, two
matrices, each containing at least N2 elements. Moreover, to suppress the rounding errors
innate in the present formulation (especially afflicting the remotest cross-coupling terms,
farthest from the diagonal) a high degree of numerical accuracy is required. Fortunately
the process can be facilitated by the very accurate and fast methods to compute the angular
integrals given in section 2.1. The remaining angular integrals arising from the inner products
of the transformation matrix will be evaluated below.

3.1. Angular integrals involved in
〈
MA

0n

∣∣MB
1n′

〉
To compute

I4(n, n′) =
∫ 1

−1
η
√

1 − η2S0n(η)S1n′(η) dη

=
∞∑

r=0

d1n
r

∞∑
r ′=0

d1n′
r ′

∫ 1

−1
η
√

1 − η2Pr(η)P 1
r ′+1(η) dη (23)

benefit may be drawn from the fact that

∫ 1

−1
x
√

1 − x2Pr(x)P 1
r ′+1(x) dx =




−2r(r + 1)

(2r − 1)(2r + 1)(2r + 3)
r = r ′ + 1

−2(r + 1)(r + 2)(r + 3)

(2r + 1)(2r + 3)(2r + 5)
r = r ′ − 1

2(r − 2)(r − 1)r

(2r − 3)(2r − 1)(2r + 1)
r = r ′ + 3

0 otherwise

(24)

which property is proved in the appendix. Hence,

I4(n, n′) = 2
∞∑

r=0

d0n
r

2r + 1

[ −r(r + 1)

(2r − 1)(2r + 3)
d1n′

r−1

− (r + 1)(r + 2)(r + 3)

(2r + 3)(2r + 5)
d1n′

r+1 +
(r − 2)(r − 1)r

(2r − 3)(2r − 1)
d1n′

r−3

]
. (25)



Conversion between spheroidal vector wavefunctions 5491

Similarly, in evaluating

I5(n, n′) =
∫ 1

−1

√
1 − η2

dS0n(η)

dη
S1n′(η) dη (26)

the relationship∫ 1

−1

√
1 − x2

dPr(x)

dx
P 1

r ′+1(x) dx = −
∫ 1

−1
P 1

r (x)P 1
r ′+1(x) dx = −2r(r + 1)

2r + 1
δr,r ′+1 (27)

when applied repeatedly, induces

I5(n, n′) = −2
∞∑

r=1

r(r + 1)

2r + 1
d0n

r d1n′
r−1. (28)

4. Conclusion

A transformation matrix has been presented, by which the vector wavefunctions of two
alternative bases of rotationally symmetric spheroidal modes may be converted into each
other. The rationale of the work has been to avoid complicated numerical integration schemes
called upon in the treatment of some inseparable double integrals. Although the conversion
process in itself involves double integrals, these are now separable into angular and radial
parts. To evaluate the angular integrals, simple sum rules were presented, resulting from
repeated application of the orthogonality properties of Legendre functions.

Appendix

Use of the identities (22) and (8.914.2) of [10] permits (15) to be written

∫ 1

−1

dPr(x)

dx

dPr ′(x)

dx
(1 − x2)x2 dx (29)

= rr ′(r + 1)(r ′ + 1)

(2r + 1)(2r ′ + 1)

∫ 1

−1
(Pr+1(x) − Pr−1(x))(Pr ′+1(x) − Pr ′−1(x))

x2dx

(1 − x2)
(30)

which, by regrouping terms can be stated as the sum of two terms,

Ia(r, r
′) = − rr ′(r + 1)(r ′ + 1)

(2r + 1)(2r ′ + 1)

∫ 1

−1
(Pr+1(x) − Pr−1(x))(Pr ′+1(x) − Pr ′−1(x)) dx (31)

Ib(r, r
′) = rr ′(r + 1)(r ′ + 1)

(2r + 1)(2r ′ + 1)

∫ 1

−1
(Pr+1(x) − Pr−1(x))(Pr ′+1(x) − Pr ′−1(x))

dx

(1 − x2)
. (32)

The integral Ia(r, r
′) becomes

Ia(r, r
′) = −2rr ′(r + 1)(r ′ + 1)

(2r + 1)(2r ′ + 1)

[
δr,r ′

(
1

2r + 3
+

1

2r − 1

)
− δr,r ′−2

2r + 3
− δr,r ′+2

2r − 1

]
upon application of the orthogonality of the Legendre polynomials [10, equation (7.221.1)],
while the integral Ib(r, r

′) can be rewritten as

Ib(r, r
′) =

∫ 1

−1
P 1

r (x)P 1
r ′(x) dx = 2r(r + 1)

2r + 1
δr,r ′ (33)
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by using (22) and (8.914.2) of [10] and by exploiting the orthogonality of the Legendre
functions [10, equation (7.112.1)]. Hence, the result (15) follows in a straightforward manner.

Next, the key expression in the integrand of (18) can developed as

d

dx

[√
1 − x2P 1

r (x)
] =

√
1 − x2

dP 1
r (x)

dx
− xP 1

r (x)√
1 − x2

= −P 2
r (x) − 2xP 1

r (x)√
1 − x2

= r(r + 1)Pr(x) (34)

using [10, equations (8.733.1) and (8.733.3)]. Expression (19) for I3(n, n′) is, in analogy,
obtainable using orthogonality.

Finally, to prove the relationship (24), we cast the integral in the form

Ic(r, r
′ + 1) = (r ′ + 1)(r ′ + 2)

(2r ′ + 3)(2r + 1)

∫ 1

−1
((r + 1)Pr+1(x) + rPr−1(x))(Pr ′+2(x) − Pr ′(x)) dx (35)

on account of (22) and the formulae [10, equations (8.914.1) and (8.914.2)]. Recurrent
application of the orthogonality of Legendre functions [10, equation (7.221.1)] yields

Ic(r, r
′ + 1) = 2(r ′ + 1)(r ′ + 2)

(2r ′ + 3)(2r + 1)

[
δr,r ′+1

(
r + 1

2r + 3
− r

2r − 1

)
− (r + 1)δr,r ′−1

2r + 3
+

rδr,r ′+3

2r − 1

]
(36)

from which the requested result (24) immediately follows.
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